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Synopsis Efficient comparisons of biological color patterns are critical for understanding the mechanisms by which or-
ganisms evolve in nature, including sexual selection, predator–prey interactions, and thermoregulation. However, limbless,
elongate, or spiral-shaped organisms do not conform to the standard orientation and photographic techniques required for
many automated analyses. Currently, large-scale color analysis of elongate animals requires time-consuming manual land-
marking, which reduces their representation in coloration research despite their ecological importance. We present Batch-
Mask: an automated, customizable workflow to automatically analyze large photographic datasets to isolate non-standard bi-
ological organisms from the background. Batch-Mask is completely open-source and does not depend on any proprietary
software. We also present a user guide for fine-tuning weights to a custom dataset and incorporating existing manual vi-
sual analysis tools (e.g., micaToolbox ) into a single automated workflow for comparing color patterns across images. Batch-
Mask was 60x faster than manual landmarking and produced masks that correctly identified 96% of all snake pixels. To
validate our approach, we used micaToolbox to compare pattern energy in a sample set of snake photographs segmented
by Batch-Mask and humans and found no significant difference in the output results. The fine-tuned weights, user guide,
and automated workflow substantially decrease the amount of time and attention required to quantitatively analyze non-
standard biological subjects. With these tools, biologists can compare color, pattern, and shape differences in large datasets
that include significant morphological variation in elongate body forms. This advance is especially valuable for comparative
analyses of natural history collections across a broad range of morphologies. Through landmark-free automation, Batch-
Mask can greatly expand the scale of space, time, or taxonomic breadth across which color variation can be quantitatively
examined.

Introduction
The increasing digitization of museum specimens and
the convenience of digital photography provide un-
paralleled opportunity to quantify how color varies
across the entire tree of life. However, high mor-
phological shape variation across taxa poses a chal-
lenge for automated image analysis tools, requiring
prohibitively labor-intensive analysis with manual ap-
proaches. Snakes in particular demonstrate impressive

variation in coloration and patterning (Allen et al. 2013;
Davis Rabosky et al. 2016) that serve critical organis-
mal functions (e.g., anti-predator signaling (Brodie III
1993; Greene and McDiarmid 1981), thermoregulation
(Clusella Trullas et al. 2007), camouflage (Isaac and Gre-
gory 2013), and luring (Hagman et al. 2008)). Despite
the iconic role of snake coloration in ecology and evo-
lution, analysis of snakes and other elongate organisms
lags behind taxa like fish, insects, and birds, specifically
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1112 J. D. Curlis et al.

Fig. 1 Batch-Mask uses a neural network to take (A) unlabeled photographs of circular or coiled biological specimens to generate (B) a
background-masked image. (C) Batch-Mask is 60x faster than manual landmarking for specimens that vary in color, pattern, thickness,
orientation, and lighting.

due to challenges in automating color pattern quantifi-
cation (see these admirable, but qualitative, approaches
(Farooq and Uetz 2020, 2021)).

When using photography to collect color pattern
data, it is essential to identify which portions of a pho-
tograph are associated with the biological subjects and
calibration tools (i.e., masking). Generally, standardiz-
ing preparation and photographing protocols reduces
postural variation and enables comparison among spec-
imens by facilitating the isolation of a biological subject.
Morphological features, such as limbs and fins, are often
used as landmarks to identify color variation in homol-
ogous regions (Van Belleghem et al. 2018; Schwartz and
Alfaro 2021). Because snakes and many other animals
lack appendages, their elongated body forms cannot be
consistently positioned for photographic data collec-
tion. Snakes are usually coiled into circles or spirals for
practicality (Simmons 2014), but the number, the diam-
eter, and direction of the coils (clockwise or counter-
clockwise) vary greatly because snake length spans six
orders of magnitude (Feldman et al. 2015). Such high
disparity in morphology and posture hinders the appli-
cation of traditional image processing techniques.

Recently, machine learning has facilitated the auto-
mated detection and visual categorization of biologi-
cal information in large and complex datasets (Li et al.
2018; Alber et al. 2019). Machine learning can be per-
formed by neural networks, which consist of processing
nodes that distribute information to neighboring nodes
(Suk 2017). These networks are trained to perform spe-
cific tasks by providing a dataset in which the task has
already been performed (i.e., training set; see Glossary).

Then, the trained neural network performs the same
task to an unlabeled dataset (i.e., inference). By includ-
ing sufficient variability in the training set, the trained
neural network can robustly perform the task on diverse
real-world biological data that vary in color, position,
size, and resolution with applications as far-reaching
as automated detection of pedestrians for self-driving
cars (Bu et al. 2019), cancer from mammograms (Yassin
et al. 2018), and invasive plant species in an ecosystem
(Shiferaw et al. 2019). A machine learning approach has
great potential for accelerating the analysis of visible
phenotypes and is already being used to count repro-
ductive structures on plants (Davis et al. 2020), mea-
sure fish abundance underwater (Ditria et al. 2020), and
identify bird species (Kumar and Das 2019).

Here, we present an automated and customizable
workflow (Batch-Mask) using a region-based convolu-
tional neural network (R-CNN) to identify and isolate
pixels associated with biological specimens from pho-
tographs (Fig. 1). First, we describe how we used la-
beled photographs to train the neural network for non-
standard organisms (Fig. 2A). Then, we use the in-
ferred weights to automate masking of unlabeled pho-
tographs (Fig. 2B). Finally, we demonstrate how Batch-
Mask combines with existing manual image process-
ing tools to automate analysis of organismal features.
Due to their challenging variability in color, color pat-
tern, size, and shape, we use a diverse benchmark pho-
tographic dataset of 33 species of neotropical snakes
(UMMZ 2021) to assess our methods. Because weights
are fine-tuned for a diverse dataset of coiled snakes,
Batch-Mask is readily applied or trained to analyze
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Batch-Mask for non-standard image segmentation 1113

Fig. 2 Summary diagram of the Batch-Mask workflow. (A) Landmarked data from a few photographs are used to train a neural network
and generate fine-tuned weights. This step is unnecessary for datasets visually similar to coiled snakes. (B) Biological subjects are
automatically isolated from an unlimited number of photographs without landmarks.

other limbless, elongate, or coiled forms, including
whole organisms, organs, or tissues. Furthermore, we
include detailed instructions to adapt the neural net-
work for identifying and isolating non-coiled biological
specimens lacking appendages for reference points. The
software has no dependencies on proprietary software
and is freely available to download and implement using
either a local desktop or cloud-based services. By using a
neural network to accommodate variation in morphol-
ogy and posture, this approach facilitates the automated
analysis of diverse datasets for ecological and evolution-
ary analysis of color patterns.

Requirements and inputs
Requirements

The Batch-Mask source code can be run on a local ma-
chine with access to a GPU, but we present a solution
that leverages Google Colab, a cloud-based service that
can be any machine with internet access. Programs such
as ImageJ (Schneider et al. 2012) or TPSDIG (Rohlf
2018) can be used to landmark the borders of a snake
in training set photographs. A list of required Python
libraries is included in the source code. Users with no
computer science background have successfully imple-
mented this tool — no specialized training or expertise
is required. For biologists interested in customizing the
neural network, we provide guidelines to ensure high-
quality masking in the Parameter Optimization section.

Obtaining images

We trained and tested Batch-Mask on an open-source
dataset of Neotropical snakes (UMMZ 2021). All spec-
imens were photographed before preservation using a
Nikon D7000 digital SLR camera (Nikon Inc., Melville,
NY, USA) with a Coastal Optics UV-VIS-IR 60 mm F/4
macro lens (Jenoptik Optical Systems, Jupiter, FL, USA)

using variable shutter speeds, F-stops, and ISO. The
camera was mounted on a tripod, angled straight down-
ward above the specimen, and positioned at a height
that varied with specimen size. Rather than using the
onboard camera flash, each specimen was illuminated
from multiple angles using fluorescent and UV light
bulbs. The background of each specimen was a blue or
black PVC mat (Elviros). Each photograph contained
one specimen, a color standard (X-rite Colorchecker
Passport Pro), and a circular gray standard (40% Spec-
tralon Diffuse Reflectance Standard) that was used for
size calibration. Photographs were saved as JPG files,
but Batch-Mask is compatible with any image file type.

To facilitate accurate color comparisons, we wrote
a custom macro in Photoshop (Adobe Inc., San Jose,
USA) tool to calibrate the color in each photograph.
We also used the OpenCV (Bradski 2000) GaussianBlur
function with a 5x5-pixel kernel size to pre-process the
photographs.

Creating labeled data

To train and implement our model, we labeled a set
of 151 photographs (Set 1 in the dataset) that included
species with diverse colors and patterns and both dor-
sal and ventral views of each snake. We recommend
that training datasets include a wide range of color, size,
shape, and pattern variation to maximize generalizabil-
ity and minimize overfitting.

We used the tpsDig program (Rohlf 2018) to man-
ually place landmarks along each side of the snake’s
body to indicate the pixels associated with the snake.
We wrote a custom script to convert the tps outline
into a JSON file. Alternatively, automated image pro-
cessing techniques such as watershedding or threshold-
ing could be used to generate snake outlines, but we
found these methods to be less reliable for our dataset
than manually landmarking (data not shown).
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Note that output masks are highly dependent on la-
beled data. In our dataset, lateral snake scales visible
from the ventral view were excluded from ventral land-
marking, due to substantially different color patterning
(Supplementary Figure S1), resulting in some output
masks of ventral photographs that identify regions more
biologically relevant than the edge of the snake’s body.

Training and implementation
If coiled or circular subjects are being analyzed, re-
fer to the userguide (https://github.com/EMBiRLab/
batch-mask) to begin implementation without train-
ing. Here, we describe how to train Batch-Mask to a
novel ground truth dataset to facilitate customization
for biological subjects that differ greatly from the visual
appearance of snakes. We highly recommend starting
training with the fine-tuned weights we provide because
they are customized for organism segmentation. Train-
ing from the fine-tuned weights we provide, rather than
pre-trained weights available for generalized image seg-
mentation (Abdulla 2017), greatly increases mask qual-
ity and reduces the time needed to customize the neural
network to other biological subjects.

Creating training and validation sets

We randomly divided the 151 landmarked JSON files
into a training pool of 135-labeled photographs and a
validation pool of 16-labeled photographs, a ratio of
9:1 (see (Guyon 1997) to determine optimal ratio). In
every training step, we randomly selected a photograph
from the training pool, then randomly sampled one
512x512-pixel square image (tile) from the photograph
for the training set. We created one fixed validation set
by randomly choosing 32 x,y coordinates and sampling
a 512x512-pixel tile at each location from each photo-
graph in the validation pool. Note that no validation
tiles overlap with training tiles because they are sampled
from different pools of photographs. However, valida-
tion tiles may stochastically overlap with each other.

Because the output masks generated by the neural
network are limited to 28x28 pixels, subdividing large
images into tiles removes the need to scale down the
entire image, resulting in more precise masking, while
increasing computation time. This approach has the
added benefit of increasing the dataset size – each por-
tion of the animal will be represented in multiple differ-
ent tiles (e.g., sometimes in the middle of a tile, some-
times at the edge), providing more context for auto-
mated identification. Thus, tiling can be considered a
form of data augmentation that does not require addi-
tional manual landmarking.

Training the neural network

Batch-Mask utilizes a customized region-based con-
volutional neural network (R-CNN) model (He et al.
2017) to generate masks of snakes in photographs. This
neural network uses the training process to fine-tune
mask weights (WFT) from pre-trained weights (WPT)
provided with Mask R-CNN (obtained from training on
the COCO dataset (Abdulla 2017)). On Google Colab
(Abadi et al. 2015), we set the GPU count to 1 and 1
image per GPU. Our learning rate was 0.0001. All other
parameters were set to the default values in the config-
uration file.

The number of validation steps must equal the num-
ber of tiles in the validation set, so that loss is calcu-
lated on the full validation set for every epoch. Mask
R-CNN suggests using a 2:1 ratio of training to valida-
tion steps (Abdulla 2017). The number of training and
validation steps in an epoch does not affect model accu-
racy, but if training and validation loss values converge
after a single epoch, decreasing the number of train-
ing steps will reveal the progression of loss values. De-
creasing training steps should be accompanied by de-
creasing validation steps, such that a roughly 2:1 ratio is
maintained. If loss values take more than 12 h to con-
verge, the number of training steps can be increased.
If both training and validation loss plateau at non-
zero values, see parameter optimization to adjust model
settings.

The training resulting in the best masks used
450 training and 50 validation steps for each epoch. We
trained for 20 epochs (24.2 h), each lasting 1.21 h. Train-
ing and validation losses plateaued at 16 epochs (used
for inference), after which validation losses began in-
creasing (likely due to overfitting).

Implementation on Unlabeled Data (Inference)

To demonstrate the utility of our automated workflow
to accurately process images outside of our training and
validation sets, we implemented Batch-Mask on a test
set of 50 unlabeled photographs (Set 2 in UMMZ 2021),
each subdivided into 212 tiles of 512x512-pixel resolu-
tion with 100 pixels of overlap with neighboring tiles in
each direction.

Inference required 25 min to mask 50 unlabeled
images. By comparison, manually generating a JSON
file of ROIs for an equal number of images would re-
quire approximately 25 h for a trained human (based
on landmarking rates in the training set). Because
these photographs have no landmarks, we created a
Python workflow that displays a random subset of
masks overlaid on original photos to qualitatively assess
accuracy.
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Batch-Mask for non-standard image segmentation 1115

Fig. 3 Loss per epoch for a successful training process. Training
loss values decreased exponentially in the first epoch. Model
weights corresponding to epoch 16, indicated by the black line,
were used for inference because this point is the onset of the
validation loss plateau.

Accuracy and validation
Loss

We calculated training and validation losses after each
epoch using the ratio of (1) pixels correctly identified as
the specimen by Batch-Mask, divided by (2) all pixels
identified as specimen by manual landmarking (Supple-
mentary Table S1, Fig. 3). This loss equation does not
penalize incorrectly identified pixels (i.e., background
pixels misidentified by Batch-Mask as specimen pix-
els). Only training, not validation, loss values inform the
training process.

Based on validation loss, Batch-Mask successfully
and rapidly isolated pixels associated with biological
subjects with up to 96% accuracy (see Supplementary
Table S1) . To maximize the size of our training and vali-
dation sets, we used the validation loss at the epoch used
for inference to represent the accuracy of the trained
neural network, instead of inferring masks for a labeled
test set.

Accuracy for downstream color analysis

To test whether errors in machine-learned inference af-
fected the accuracy of color analyses, we used pattern
energy, computed by micaToolbox, as our metric (See
‘Integrating and automating existing tools’ section for
how to incorporate micaToolbox into the Batch-
Mask workflow). Pattern energy is a shape-independent
metric of visual granularity computed as the standard
deviation of the pixels filtered at a range of frequency
bands (Troscianko and Stevens 2015). Here, we com-
puted the pattern energy with respect to different fre-
quency ranges in each visible color channel to deter-

mine whether losses were associated with specific colors
or species.

We compared two masks for each photograph in
the training set: (1) hand-labeled masks and (2) masks
produced by Batch-Mask after 16 epochs of training.
We computed the pattern energy for each visible color
channel for each photograph. Pattern energy as a func-
tion of pattern size for each color channel showed
no significant differences between hand-labeled and
Batch-Mask datasets (paired t-tests, all P < 0.05, Fig. 4).
These results demonstrate that pixel-wise differences
between the hand-labeled and inferred datasets do not
significantly compromise the quality of downstream
color analyses.

Parameter optimization
To assist with troubleshooting and customization of the
workflow, we discuss settings as they relate to loss, mask
outputs, and computation time. Other settings, such
as learning momentum, relative loss values, and mask
shape, can also be modified but will not be discussed
here.

Troubleshooting and modifying settings

The three parameters that have the most effect on out-
put are learning rate, tile size (resolution), and tile over-
lap. Learning rate controls the magnitude of the correc-
tion to the weights in response to a mismatch between
training output and the labeled data. High learning rate
values cause the training and validation loss values to di-
verge or wildly oscillate, whereas small values result in
slower convergence but less oscillation. We recommend
starting with smaller learning rate values and slowly in-
creasing between training sessions to improve perfor-
mance. Note, the Mask R-CNN code includes by de-
fault a learning rate decay throughout a training session,
which was not modified for this method.

The resolution of each tile, number of subdivisions,
and overlap between neighboring tiles sampled from
each photograph are interdependent. If ROI portions
are unidentified (Fig. 5A, top) or if undesired regions
are included, decreasing tile size (increasing the num-
ber of subdivisions for the same amount of overlap) in-
creases mask resolution. A higher resolution typically
produces a more accurate model but requires exponen-
tially more memory (Fig. 5A, bottom).

If mask inaccuracies correspond to the edges of sub-
divided image tiles, we recommend increasing over-
lap (the number of pixels shared between neighboring
tiles). With higher overlap, features are viewed in mul-
tiple contexts, providing more opportunities for proper
identification. Alternatively, decreasing overlap reduces
computation time for acceptable output masks.

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/62/4/1111/6586352 by guest on 21 N

ovem
ber 2022



1116 J. D. Curlis et al.

Fig. 4 The mean residual differences (dashed line) between the pattern energies computed using the hand-labeled (solid line) and the
inferred (dotted line) masks for each photograph in the training dataset. Differences are sorted by color channel: red, green, and blue. The
clouds represent the standard deviation from the mean for each pattern size.

Overfitting

Accuracy is highest when the distribution of variation
in training and validation sets match. Overfitting oc-
curs when the model is complex enough to memo-
rize the entire training dataset, causing poor generaliza-
tion (training loss decreases, but validation loss plateaus
or increases after a plateau). To avoid overfitting, ex-
pand the size of, and variation within, the training set
(specimen size, shape, pattern diversity, color) to more
accurately reflect the variation in the validation set.
If diversity cannot be expanded with additional im-
ages, randomly changing the brightness and the hue of
each image introduces useful variation in the training
set.

Post-processing

Because loss calculation does not penalize non-ROI pix-
els misidentified as ROI pixels, the resulting inferred
masks will likely include pixels outside of the snake.
To eliminate these outliers, our script uses the OpenCV
function findContours to identify the largest contiguous
unmasked area and eliminate unconnected areas. This
step is helpful if portions of the background are recog-
nized incorrectly as ROI. If the ROI is in more than one
contiguous piece, this function can be changed to rec-
ognize two or more unmasked areas.

Customization considerations

Future customization could include incorporating fully
convolutional functionality to the neural network to
identify multiple classes of objects or multiple objects
of the same class. This would enable the simultaneous
identification of snakes and calibration objects or mul-

tiple snakes in the same picture, respectively. However,
the user should be aware that this would require la-
belling all the objects and assigning them to the differ-
ent classes in the training set. Previous studies have suc-
cessfully used human data labelling services to rapidly
construct such training sets (Russell et al. 2008).

Integrating and automating existing tools
A key advantage of Batch-Mask is the ease of incor-
porating existing color analysis tools into the Batch-
Mask Python workflow to automate the analysis of
large datasets. Any python-compatible image process-
ing software can be incorporated into the Batch-
Mask workflow. This effectively automates analyses
that previously required multiple manual inputs per
photograph. The open-access code we provide (http
s://github.com/EMBiRLab/batch-mask) demonstrates
this process by incorporating the existing micaTool-
box (Troscianko and Stevens 2015) plugin for ImageJ
(Schneider et al. 2012) into a fully automated Python
workflow.

Automated color analysis workflow

We incorporated micaToolbox (Troscianko and Stevens
2015) functions into the Batch-Mask workflow to com-
bine color channels, scale the image by size, and create
a single MSPEC file for pattern energy analysis of com-
plexity in the snake ROI. To automate the process of
generating MSPEC images, we modified the micaTool-
box script to load the ROIs directly from the JSON file
and batch-generate MSPEC files for multiple specimens
at once.
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Fig. 5 Visual guide to troubleshooting the training process. Loss plots inform (A) Learning rate. Mask quality informs (B)
Subdivision/Resolution and/or (C) Overlap. The top row output indicates that the parameter should be increased. The bottom row output
indicates that the parameter should be decreased. Note that the loss plots are exaggerated to show the most recognizable patterns and
were not generated by training results.

To calibrate the size in each photograph automati-
cally, we wrote a script to identify a circular gray color
standard in each photograph using the Circle Hough
Transform algorithm (Bradski 2000). The gray standard
and snake ROIs were combined and exported into a sin-
gle JSON file.

Implications
Batch-Mask can be used to facilitate the rapid, auto-
mated identification and isolation of complex biological
forms in photographs, enabling efficient quantification
of phenotypic variation. Although this masking is but
a single component of any color pattern analysis work-
flow, it can easily become the rate-limiting step for or-
ganisms with limbless, “non-standard” body forms that
can vary across so many spatial axes. Moreover, some
of the most powerful color pattern analysis tools, such
as patternize, do not currently include masking capa-
bilities and assume that if the user wants to analyze or-
ganisms isolated from their backgrounds, the user must
complete the masking step beforehand (Van Belleghem
et al. 2018). Other color pattern analysis tools, such as
micaToolbox, require manual landmarking as part of
the base workflow (Troscianko and Stevens 2015).

Masking is especially important in automated species
recognition to prevent computer vision algorithms from
using potentially irrelevant background information
(Ribeiro et al. 2016). Batch-Mask is therefore a use-
ful tool to pre-process images for automated species
identification algorithms (see description in Durso et al.
2021 ).

While obtaining digital photographs to capture phe-
notypic diversity among organisms has become increas-
ingly easy, methods for analyzing such datasets often
rely on the user to identify, landmark, and/or mask or-
ganisms by hand before the data can be fully utilized.
Advances in machine learning have addressed this by
substantially reducing the time and effort required to
analyze larger datasets, yet the sheer complexity and
diversity of biological forms continue to present chal-
lenges for generalized methods. The limbless, slender
body shapes that are characteristic of snakes are of-
ten problematic for neural networks because many can-
not feasibly be arranged in a straight line and must be
coiled to fit inside the frame of a photograph. Batch-
Mask can also be easily trained to identify elongate
forms in non-coiled postures (Supplementary Figure
S2) , which enables broader implementation of elon-
gate body forms exhibiting in vivo behaviors and shape
configurations. Elongate phenotypes are quite preva-
lent across taxa, including organisms such as other
reptiles (e.g., amphisbaenians and other lizards), am-
phibians (e.g., tadpoles, sirens, caecilians), fishes (e.g.,
eels, hagfishes), annelids (e.g., polychaetes, earthworms,
leeches), gastropods (e.g, slugs, snails, nudibranchs),
myriapods (e.g., centipedes, millipedes), and flatworms.
Such shapes are also found in homologous appendages
like limbs, tails, and tentacles, as well as organs and
tissues such as intestines and sperm. Given the perva-
siveness of these complex forms, the Batch-Mask work-
flow has extremely far-reaching applications including
fields from ecology and evolutionary biology to human
medicine.
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Glossary
Mask R-CNN
A Region-based Convolutional Neural Network that
uses a mix of convolutional and fully connected layers
to classify images.
Mask
Binary array with the same dimensions as the image,
with 1 indicating snake pixels and 0 non-snake pixels.
Region of interest (ROI)
Parts of an image outlined by a polygon or designated
by a binary array.
Label
Human-generated ROIs for the training and validation
sets.
Landmarking
Identifying the locations of comparable morphological
features among distinct biological specimens.
JSON
JavaScript Object Notation formatted file comprising
landmark and image information.
Weights
Values applied and changed during training to fit the
neural network to data. Pre-trained weights (WPT) were
provided with the standard Mask R-CNN model trained
on the COCO dataset. Fine-tuned weights (WFT) fit
during training are utilized, but not changed, during in-
ference.
Training pool
Set of 135 labeled photographs from Set 1 from which
sample tiles are extracted to generate the training set.
There is no overlap between training and validation
pools.
Training set
Set of tiles sampled from photographs in the training
pool. There is no overlap between training and valida-
tion sets.

Training step
The neural network predicts labels for tiles from the
training set, then updates the model weights if the
model fails to match the true mask.
Validation pool
Set of 16 photographs from Set 1 from which sample
tiles are extracted to generate the validation set.
Validation set
Set of labeled tiles used for the validation steps of the
training process.
Validation step
The neural network predicts labels for images from the
validation set but does not change model weights. Val-
idation steps calculate loss values on a labeled dataset
distinct from the training set. This allows detection of
overfitting to the training dataset.
Loss
Accuracy of model predictions for each pixel calculated
by the number of pixels shared by the label and the mask
divided by the number of pixels in the label only (He
et al. 2017).
Epoch
A set number of training and validation steps. Model
weights are saved after each epoch. Changing the num-
ber of training and validation steps per epoch changes
how frequently model accuracy is assessed.
Training Process
Using several epochs of training and validation to fine-
tune model weights.
Inference Process
Using fine-tuned weights to generate masks for data
outside of training and validation sets. Note that weights
are not updated during inference.
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